На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
['tju(ə)riŋməʃi:n]
общая лексика
машина Тьюринга
гипотетический вычислитель, предложенный английским математиком Аланом Тьюрингом (Alan Turing) в 1936 г. как инструмент для изучения сложности алгоритмов. Целью Тьюринга было описать границу между тем, что вычислительная машина может делать, и тем, что ей не под силу. Машина Тьюринга состоит из блока управления, считывающей и записывающей головки и бесконечной длины ленты с ячейками, каждая из которых может содержать произвольный символ некоторого конечного алфавита. Вычисления состоят из последовательности шагов, задаваемых программой блоку управления. Ячейка, находящаяся под считывающей головкой называется текущей. Каждый шаг может включать в себя считывание символа в текущей ячейке, запись в неё символа, возможное перемещение головки в соседнюю ячейку слева или справа, смену состояния и остановку. Вычисления начинаются в специальном состоянии, называемом стартовым, и заканчиваются в состоянии, называемом остановом. Кроме наличия бесконечной памяти, современные процессоры очень похожи на машину Тьюринга
Смотрите также
общая лексика
универсальная ЭВМ
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm.
The machine operates on an infinite memory tape divided into discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states. At each step of its operation, the head reads the symbol in its cell. Then, based on the symbol and the machine's own present state, the machine writes a symbol into the same cell, and moves the head one step to the left or the right, or halts the computation. The choice of which replacement symbol to write and which direction to move is based on a finite table that specifies what to do for each combination of the current state and the symbol that is read.
The Turing machine was invented in 1936 by Alan Turing, who called it an "a-machine" (automatic machine). It was Turing's Doctoral advisor, Alonzo Church, who later coined the term "Turing machine" in a review. With this model, Turing was able to answer two questions in the negative:
Thus by providing a mathematical description of a very simple device capable of arbitrary computations, he was able to prove properties of computation in general—and in particular, the uncomputability of the Entscheidungsproblem ('decision problem').
Turing machines proved the existence of fundamental limitations on the power of mechanical computation. While they can express arbitrary computations, their minimalist design makes them unsuitable for computation in practice: real-world computers are based on different designs that, unlike Turing machines, use random-access memory.
Turing completeness is the ability for a system of instructions to simulate a Turing machine. A programming language that is Turing complete is theoretically capable of expressing all tasks accomplishable by computers; nearly all programming languages are Turing complete if the limitations of finite memory are ignored.